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ABSTRACT otk

The importance of noise and vibration peaks and their damaging effects is briefly described.
A study is made on the dependency of the peak distribution upon the shape of the vibration
spectrum using some of the results obtained by S. O. Rice. It is shown that a modification of
Rice’s exact theory will furnish good approximations in practice, and that the approximations are
simple to “handle’’ mathematically. Furthermore, it makes the determination of peak probability
density curves a simple matter when the frequency response of the system is known (and
independent of excitation level), and the excitation is known fo be Gaussian random noise,

SOMMAIRE

Apres un bref rappel de l'importance des valeurs de crétes en ce qui concerne les effets dangereux
des bruits et vibrations, |‘article présente une étude de linter-dépendance entre la répartition
statistique des crétes et le spectre correspondant, basée sur certains résuutats des travaux de
S. O. RICE. On montre qu’une modification de la théorie de Rice permet d’obtenir des approxi-
mations simples a ftraiter mathématiquement et utilisables en pratique. De plus, on peut alors
facilement déterminer la répartition statistique des crétes d’apres la courbe de réponse du
systeme consideré, pour tout niveau d’excitation gaussienne.

LZUSAMMENFASSUNG

Scheitel von Gerduschen und mechanischen Schwingungen kdnnen eine zerstdorende Wirkung ha-
ben. An Hand der Ergebnisse von S. O. Rice wird der EinfluBB des Schwingungsspektrums auf die
Scheitelverteilung untersucht. Durch Modifikation der exakten Theorie nach Rice erhdlt man eine
praktisch brauchbare Anndherung, die mathematisch einfach zu behandeln ist, Die Methode er-
leichtert die Bestimmung der Scheitelhdufigkeitskurven, wenn der Frequenzgang des Systems be-
kannt und unabhangig vom Erregungspegel ist, und wenn ferner als Erregungssignal Gaufl'sches
Breitbandrauschen angenommen wird.

K. LARSEN & SON -~ LYNGBY



Eftects of Spectrum Non-linearities upon the

Peak Distribution of Random Signals.
By

Jens Trampe DBroch, Dipl. Ing. 18T H.

Introduction.

In the course of the past decades the analysis of random noise and vibralion
signals has gained mcreasing imporlance, due mainly lo the development of
fast travelling vehicles, However, in daily life too, the importance of random
signals such as factory and ftraffic noise, has increased rapidly i the later
years.

As regards audible noise, great efforts have been, and are being, made to
develop complele theories for hearing damage and the “intrusiveness” of
these sounds. In the field of vibration the study of the fatigue of metals and
the sudden malfunction of equipment and parts, due to high vibration peaks,
have been mmtimately related to the study of random signals.

Because of their nature random noise and vibration signals can be mathe-
matically described only by means ot statislical methods and a number of
investigalors have successfully applied these methods in their studies. In
this paper 1he peak response of various electromechanical analogues to
random 1nputs are being investigated, and extensive use has been made of
some of the results obtained by S. O. Rice and described in his now “classic”
work: “Mathematical Analysis of Random Noise”,

Some specilal measuring arrangements have been developed to check the
results experimentally, and the B & K Random Noise Generator Type 1402
was used as signal source during the experimental part of the work. The
Tvype 1402 Noise Generalor has been found especially well suited for this
kind of invesfigation due to its symmetrical Gaussian instantaneous value
distribution and the experimenial curves have been measured up to around
3.0 ¢ values. At higher amplitude values, the Type 1402 Noise Generator
shows slight deviations Irom a truly Gaussian distribulion, and the measur-
ing lime 1mmvolved m 1nvestigations at the high o-values, makes the use of
these values unatiractive. Il is assumed that an experimental verification of
the theorelical results up to the above mentioned values of 3.5 ¢ will suffice.

Statement of the Problem.

Rice has given a general formula for the distribution of peak values (noise
signal maxima)j as a tunction of spectrum shape. e also solved the equation
for the case of an ideal low-pass filter with a “flat” passband, and gave the

.

result for an ideal “infinilely narrow” band-pass filter. The two results are
shown m Fig, 1. One of the questions arising immediately from a study of

Fig. 1 1s: How will the distribution be affected by other types of random



signal frequency specira? If the band-width ot the band-pass filter 1s 1n-

b

creased from “infinitely narrow” to a low-pass filler, one would expcct the
distribution curves to lie between those given 1n Fig. 1. It can be verified
both theoretically and cxperimentally that this i1s the case. llowever, the
slope of the spectrum also plays an important role and 1in some cases an
exact mathematical treatment may lead to results which give only little
relation to practical experience. The reason for this is that the malhematical
theory does not distinguish between very small peaks and notches, which may
he of little practical importance, and relatively great peaks and notches,
which may be of considerable importance wilh regard to the malfunction of
essential equipment. In the following, an approximate theory which covers
a wide range of commonly enccuntered frequency spectra will be proposed,
and it 1s shown how the distribution of 1mportant peaks depends upon the
shape of the spectrum.

alS

X
953326 O

I'ig. 1. Probability density curves for the distribution of noise maximaua.

a) Valid for an “infinitely narrow” band-pass [ilter (Rayleigh-distribution ).

b) Valid for a “flat” low-pass f[ilter with infinitely sharp high frequency
cut-off (Rice).

(xeneral Theory of the Peak Distributions.

It has been shown by Rice a.o. that signals which exhibit Gaussian (normal)
instantaneous value distribution can be represented by an infinite number
of sine waves combined in random phase, independent of spectrum shape.
However, the peak values will, to a great extent, be 1nfluenced by the
spectrum shape. Rice found a general formula for the peak distribution as a
function of spectrum shape as long as the circuils behave linearly in amplitude
response i.e. as long as the above statement of Gaussian distributed instantane-
ous values holds true.
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Actually the formula given by Rice consists of lwo additive terms, one which
has a Gaussian character wilh zero as a mean, and one which has the character
of a Rayleigh like distribution.

A slight transformation of Rice’s original formula gives:

B ) ] . , -
V1 —« X2 Va o x X 4 / o
- Ce e e @ eXl) ——— o —e - j| = m . 1 + erf / _____ — - - . eX 1)
oV2m i 2 0% (1 — a) 20 o | o V 2(1—a) /.
“Gauss -term “Rayleigh”-like term

In the formula:
x = peak values of the signal.
o = r.m.s. value of the signal (standard deviation).
a — parameter, sce Appendix, p. 30.
erf = error function.
p(x) = probabilily densily of x.

[t can be scen that the relalive importance of the two terms solely depends
upon the value of a. If a = 0 the peak distribution is truly Gaussian while if
a = 1 the distribution is truly of the Rayleigh type. Therefore the shape of
the peak distribution curve will always lie betwween a Gaussian distribution and
a Rayleigh distribution. The factor a depends on the spectrum shape and will
be discussed in detail in the following. In Fig. 2 plots of the probability density
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I'ig. 3. The curves shown in Fig. 2 replotied in per cent of the true Rayleigh
distribution.
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function p(x) are given with a as parameter, and Fig. 3 shows the same curves
replotted in per cent of the true Rayleigh-distribution also with ¢ as parameter.
It can be seen from Fig. 3 that the higher peak values always tend to show
a Rayleigh like distribution (see also formula above) but the absolule probab-
ility density at these levels deviate from those of the Rayleigh distribution. The
deviation from the Rayleigh distribution is due to the peaks and noltches con-
tained in each “main half cycle” of the noise signal, see IFig. 4 and the import-
ance of the deviation must, in practical cases, be judged from this point of
view.

To possibly aid such judgements being performed, typical signal wave forms
will be shown together with the experimental results obtained in this article.

[ |

263327

e - Noise maxima

Fig. 4. Sketch illustrating the distribution of maxima in a sample of a wide
band noise signal.

Types of Spectra Investigated.

The following types of spectra and “mechanical” systems have been in-

vesligated:

I. Spectra where the power spectral densily decreases or increases wilh
frequency at a constant rate between two “limiling”’ [requencies, see
I'1g. 5.

2. A system consisting of a spring and velocity dependent damping, (low-
pass filler) I'ig. 6.

A

3. Single degrec of Ircedom systems I'1g. 7 and “idealized” single degrece of
freedom syslems.
The “idealization” is based upon energy-reiations and it is shown that
this kind of 1dealization 1s reasonable on account of the measured results.
The “idealizalion” considerably simplifies the theoretical treatment of
peak distributions 1in important practical cases.

+. Multi degree of freedom systems, ['ig. 8.
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Fig. 5. Plots of the power spectral density vs. frequency for various
“theoretical” noise spectra.
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I'ig. 6. Frequency response, “mechanical diagram” and electrical analogue

circuit (impedance analogy) of a mechanical system consisting of a spring and

viscous damping. 1 he response plot shows the force measured on the spring

(when a constant, frequency independent force is applied to the complete
system.

xperimental Technique.

To verity the theoretical conclusions a special measuring arrangement was
developed. 1t consists of a random noise generator (B & K Type 1402}, a
modified electronic counter, a variable DC supply and a true R.M.S. Volt-
meter (B & K Type 2603). Use was also made of a band-pass filter set
(B & K Type 1612) and a band-pass filter with very sharp cul-offs. IYig. 9
shows the basic sel-up.

The counter was of a construction that made it possible to produce a
voltage “window”, Fig, 10. Furthermore the circuitry allowed the following
conditions to be provided: When a signal voltage with a positive slope
passed through the lower “end” of the “window’” the counter was “made
ready’” to count. If the voltage then dropped below the “window” a count
was registered. On the other hand, if the vollage increased and passed

through the upper “end” of the “window” the counter was blocked until the

10
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Fig. 9. Measuring arrangement used to determine experimentally the
probability density curves of noise voltage maxima.

vollage again had dropped to a value below the lower “end”’ of the window.
In this way a count was only registered if a vollage peak occured within
the limits of the “window”. Calibration was made with a sinusoidal signal
and it was possible to keep the width of the window constant to within
narrow lolerances during all the measurements. It can be seen from Fig. 10

that a combination of a peak and notch which lie within the window will not
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k! :
a) ‘ Counter blocked Window
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“Noise Signal \
Noise Signal
Counter
‘S;:' actlvc}ted Counter Upper end
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I'ig. 10. Sketch illustrating the principle of operation of the arrangement shown
in ig. 9.
a) One noise maximum is reqgistered on the counter
b) Two noise maxima are registered.
¢) No noise maximum is registered.
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be regislered. When the window is chosen to be very narrow all but the
-ather insignificant peaks will be counted. The distinction between “signi-
ficant” and “insignificant” pecaks is rather difficult to draw up sharply, bui
it will be shown later that a very useful Kind of distinction may be made
on an energy-basis. By moving the “window” relative to the signal the
number of peaks occuring in certain time intervals (measuring time), and
at various signal levels can be determined. IFor most of the measurements
reported here a “window” width of 0.2 ¢ was used and the measuring time
was chosen to be 2 min. The frequency range 1 which measurements were

made was from some 300 c¢/s to around 2400 c¢/s.

The Peak Distributions of some Theoretical Spectra.

In this section, a special type of frequency spectra, not likely lo be exactly
met in practice, is dealt with. However, some important conclusions may be
drawn from these investigations which are used later in the work. The
spectra are of the type shown in IFig, 5 and the power spectral denstly
inside the “pass-band” can be written:

w{f) =¢ X {"

where ¢ 1s a constant, f = {requency and n an exponent that can be positive,
negative or zero. The full mathematical trealment of lhe problem will not
be given here, but it should be mentioned that it is necessary to divide the
problem 1nto several “cases”, so that no one general formula can be given
which covers all values of n. Fig. 11 shows the theoretically derived curves
for a as a function of n, with the ratio belween the limiting frequencics

|t
e

(f1 and f2) as parameter. It can be seen that for , smaller than around 2

(1/1 oclave bandwidth) the lowest a-value is obtained in a range of n = 0 to
n = — 6 and that « 1s practically constant within this range. Also the lowest
a-value 1s approximalely 0.86 which, from the curves shown in Fig. 3, gives
a lhayleigh like peak distribution for peak values higher than some 1.25 o.
Considering this the following conclusion may be drawn:

I'he shape of the “filter” characteristic inside the pass-band of a resonant
filter system (single degree-of-freedom system) narrower than some 1/1 octave
does not change the distribution of important peaks to any appreciable extent,
and may thus, i practical cases, be approximated by means of a “bhox” con-
taining roughly the same amount of energy, 1.e. having the same R.M.S.-value
(o) as the original noisc.

On the other hand, if the band considered is considerably greater than 1/1

fo

F ==

octave (f1 > 2) the slope of the spectrum inside the band will theoretically
1 ‘.

e

influence the peak distribution to quite an extent. If, for example £ 1s of the

order of 25 or higher and the slope of the spectrum is some — 9 dB/octave

(n = 3}, the theoretical peak distribution will be almost Gaussian {a = 0) see
['1ig. 11. Now, what does it mean physically when the peak distribution

13
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Fig. 11. Curves showing how the factor, o, variecs with the exponent, n,
(spectrum slope) for varicus ratios

approaches a Gaussian shape? This can be explained on the basis of Fig. 12.
Here two signals are shown, one which has a “irue’” Rayleigh distribution of
the peaks (narrow band noise) and one which has a Gaussian lype peak
distribution. It is clearly noticed that lo obtain a frue Ravleigh distribution
only one noise maximum [(or minimum) occur between two succeeding zero
crossings of the signal, while in the case of a Gaussian type peak distribution
a number of “smaller” noise maxima (and minima) cccur beiween the zeros.
When the signal being studied is derived from mechanical vibrations of a part
or structure and the difference between a maximum and the succeeding
minimum becomes greater the existance of these “smaller’” peaks and notches

¥ lr i

263363

263337

I'ig. 12. Two typical noise signals:
) Narrow band noise

b) Wide band noise
Note the difference in the distribution of maxima.
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may become important. In this case they will cause “extra” losses to be
induced in the already prestressed material and may thus to a certain extent,
contribute to possible malfunction of the part or structure due to fatigue. It
may therefore be assumed that in the case of vibration signals these types of
neaks and notches may have o be taken into account when predicting the
fatigue Iife of the part.
Some experiments have been made In an attempt to check the theoretically
predicted peak distributions discussed in the preceding text. The measuring
arrangement sketched in IFig. 9 was used and the output signal from the
Random Noise Generator Type 1402 was shaped so that spectra of the type
shown in Fig. 5 were obtained.
The 1/3 and 1/1 octave spectra were produced by connecting a Band-pass
IFilter Set Type 1612, as “External IFilter”, to the gencrator and making use of
the built-in — 3 dB/octave condition as well as a simple R-C-circuit. In the
ase of the wide-band output signals the Band-Pass Ifilter Set Type 1612 was
substituted by a special band pass filter with sharp cut-offs at approximately
300 c/s and 2.4 ke¢/s. With the above mentioned R-C-circuit connected across
the output of the Generator, a spectrum with a slope of —6 dB/octave is
obtained, and combining this with the built-in -— 3 dB/octave condition, spectra
with slopes of -—3 dB/octave, — 6 dB/octave and —9 dB/octave can be
readily produced. Also by using a sccond R-G-circuil a spectrum slope of
- — 12 dB/octave was obtained.
Fig. 13 shows the resulting peak distributions measured on the 1/3 and 1/1
octave noise bands. I was not possible, within the measuring accuracyv, to
state any difference in distribution whether the spectrum inside the pass-band
was flat or had a slope of — 9 dB/octave, and the resulls scem to closely
follow the ones theoretically predicted.
The center frequency, of the noise bands used n the experiments, was
looo ¢/s.
The measurements on the wide band signal were considerably more difficult
to perform in that here, the “small” peaks and nofches play an important role,
and the width of the measuring “window” 1is therefore more critical. A
“window” width of 0.2 ¢ was chosen on the basis of the following con-
siderations:

1. Succeeding peaks and notches inside 0.2 o will presumably be of little

practical imterest, and
2. With the equipment available, difficulties arose 1n Kkeeping the instru-
mentation strictly linear up to 4 o-values 1 a narrower “window” was

employed. ’
)

s

To obtain a fairly well defined f"-ratio the afore mentioned special band-pass
1

filter with very sharp cut-offs was designed, and inserled as “External Filter”
in the Noise Generator.

A number of peak probabilily densily curves were now measured for various
spectrum slopes. The results are given in Fig. 14 where certain theoretical

15
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Fig., 13. Some experimental results:
a) Probability density curve for the distribution of maxima in a 1/1 octave
band o] noise.
b) Probability density curve for the distribution of maxima in a 1/3 octave
band of noise.
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I'tg. 14. Probability density curves for the occurance of maxima in a wide-
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band (;"-’8) noise signal. Comparison of theoretical and measured results.
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curves are also plotted. These curves correspond to a-values ol 0.3, 0.65, and
0.75, and by consulting Fig. 11, it can be seen that they represent the
fo

theoretical probability density curves expected for an —f—l—ratio of around 8.

It should be mentioned here lhat the deviation between the measured results

and the theoretically predicted ones 1s most hkely to be due to read-out, and

meter errors In the measuring instruments. (A very small error in the r.m.s.

value of the noise signal relative to the DC voltage setling the “window” level

results in considerable “deformation” of the probability density curve).

The difference in probability density curve belween the signal with a spectrum

slope of — 6 dB/octave and that corresponding to a slope of —9 dB/octave

1s rather msignificant. This also agrees very well with the theoretical results of

Fig. 11.

In Fig. 15 are shown some typical wave-shapes oblained for various spectrum
fo

sl

slopes and £y ~ 8. Fig. 15 (a) shows the case where the spectrum slope is

-+ 6 dB/octave (n = 2), while in Fig. 15 (b) the signal frequency spectrum was
“flat”. With a spectrum slope of — 6 dB/octave a signal of the type shown in
[ig. 15 (¢) was obtained. Finally Fig. 15 (d) indicates the wave-shape when
the spectrum slope was — 9 dB/octave. The change from a typical “high fre-
quency signal” to a typical “low frequency signal” as a function of spectrum
slope 1s clearly noticed. Also note the change in signal “characteristic”. While
the signal shown in Fig. 15 (a) has an almost Rayleigh (narrow band)
character the signal in Fig. 15 (d) shows a number of small peaks and notches
at various levels.

In the following, extensive use will be made of the experimental results
obtained here with regard to the effect of spectrum slopes upon the peak
distribution.

Low-pass “Filter”.
The shape of the theoretical peak distribution for an ideal (boxshaped) low-

5

pass filter has been given by Rice and corresponds to « =g - [f on the other

hand, exact calculations on an actual low-pass filler of the tvpe shown in
I'ig. 6 and which is equivalent to a spring with velocity type damping are
carried out, one comes to the result that when a true “white” noise signal
(fx=> ©Q) 1s impressed upon the system the peak distribution will be Gaussian.
This 1s also to be expected from the results obtained with the “theoretical

fo

spectra” above, 1n that then ' —> OC and the spectrum slope is — 6 dB/octave
1

(n = — 2} sce also Fig. 11. Physically the Gaussian shape is due to the very

small peaks and notches caused by the high frequencies being considered by
the exact mathematical theory. These peaks and notches may however, be of
little, if any, practical importance. Mathematically the case reveals itself in
that some ol the integrals concerned do not converge. Rice, in his original

L7
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IFig. 15. Samples of wide-band (pz*“-‘ 8 ) noise signals:
1

a) Noise spectrum sloping + 6 dB/octave ((n = 2).

b) Flat (constant power spectral density) noise spectrum (n = 0).
¢) Noise spectrum sloping — 6 dB/octave (n = — 2).

d) Noise spectrum sloping — 9 dBloctave (n = — 3).

|

work also points this out and discusses briefly the case ot the R-C-circuit.

Some calculations have been made where a sharp cut-off was introduced at a
1

27 RC”

re vs. the ratio fi/f, is shown in Fig. 16. Measurements have also been made in

frequency, fx, above the R-C-cut-off frequency, f, = and a curve of

an altempl to check the curve up to fx/fo values of around 8 and the correlation
was quite satistactory, IFig. 17.

When fy/to becomes greater, the high frequency peaks scem lo be of such small
magnitudes that they are oulside the range of the measurimg equipment, and
they may then presumably also 1 practical cases be neglected.

Single Degree of IF'reedom Systems.

A sigle degree-of-freedom system may consisl of a mass, a spring and some
sort of damping. In the general differential equation for these types of systems
the damping is normally assumed to be of the viscous type (velocity de-
pendent), and the svstem can be simulated by an clectrical R-L-C-circuit. The
actual configuration of the analogue circuit depends upon whether it 1s desired
(o know the acceleration, velocity or displacement of the responses and what
tvpe of forcing signal is used( acceleration, velocity or displacement).

The frequency response of the signal can then be one of the three types shown
in I4g. 7, and the distribution of the peaks in all three cases will be considered
in the following.

Again exact calculation of the peak-distribution (Immits of 1ntegration 0 and OQ]
reveals that they should theoretically be of a Gaussian type in the case of

18
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Fig. 16. Curve of a vs. fx/fo for an R-C-type low-pass filter. Exact theoretically
calculated curve is here compared with actually measured results (+).

S N

Measured Peak Distribution:

" (Low Pass R-C-Filter]
! ' * wif] ‘l?
o —— - | — — = -6dBfoctave ——
b
} | -
fo fx :
- ! o N i
| | ; e obtained with a8
| . btained with ¥~ 35
L Q\ A obtaine W Fo 3.

e \ w obtained wtth %%2

1.2 Vi 25 3 3.5

£,
X
53345 o

IFig. 17. Determination of a from measured peak probability density curves for
a damped spring system (R-C-circuit). See also Fig. 16.

spectra of the types shown i Fig. 7 (a) and (b) while 1n the case of Fig. 7 [¢)
5

the “limiting” case 1s «o =9

This 1s in contradiction to practical experience where, for a reasonably high
(J-value in the system, an almost ideal Ravleigh-distribution is found for the
spectrum shape IFig. 7 (a). Also when looking at the signal on the screen of
an oscilloscope 1t has, in this case, the dislinct character of a narrow band
noise signal even when the forcing spectrum is “white” up to some fi/fo = 40.

I'he explanation for the difference between the resulls calculated from the
exacl mathematical theory and praclical experience may also in this case, be

19



found in the existence of infinitely small high frequency peaks and notches.
Considering, however, that by far the greatest part of the spectrum energy 1s
conlained in the resonance peak, it should be possible to approximate the type
ol spectrum shown in IYig. 7 (a) and (b) with a box-type spectrum containing
(the same amount of energy centered around the resonance frequency. (Confer
also “The Peak Distribution of some Theoretical Spectra”, p. 13). The top of
lhe “box” should be equal to the maximum resonant response and the width

7
of the “box” would be < times the — 3 dB bandwidth of the resonance, see

2
also IFig. 18.%)

bo

—-_—re war el e R S S S S

T
O Thoy X oty

!

SRR

B

e
2633416

-t

0
Fig. 18. Sketch showing how the frequency response of a single degree of
freedom system is transformed into a “box” containing the same amount of
enerqy.

To invesligate the validily of the “box”-approximation a number of measure-
ments have been made. The resulls of these are shown in Fig. 19 where the
measured peak distributions are compared to the distributions calculated
from the equivalent “box”-approximation for various Q-values of the
svstem, It can be secn that even for Q-values as low as Q = 2 the approxima-

?

tion is quile good in cases where the specirum “end-slope” towards higher
[requencies is — 12 dB/octave. When a spectrum of the type shown in Fig. 7
(b} 1s being considered the “box”-approximalion can only be used when the

Q-value of the system 1s considerably higher than in the case of Fig. 18 (or

%)y The RMS-value for ithe resonant system 1s:

- /ﬂ X w (f) X f, X Q g /a X w (fp) X Q2 X Af,
Orog — | T e — / e S
lf D lf 2
Where w (f;) is the mput power speclral density, f, = resonance frequency, Q = reson-
ant amplification factor of the system and Af, = ~— 3 dB resonance bandwidth.

The RMS-value of the equivalent “box-filter’ is:

Obox — \/ W (fl) X_QQX Z]fh
Where w (f;) and Q are defined above and Af, = width of the “box”.

JT

X Af..
5 At

[hus setting g..e = opox gives Al =
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the forcing spectrum falls off above the resonance frequency) due to the
—— 6 dB/octave end-slope of the spectrum towards higher frequencies.

In the case of IYig. 7 (¢) a single “box”-approximation cannot be used at all.
However, this type of specirum 1s not hkely to be met in practice, as
normally the forcing spectrum itself drops off towards higher frequencies
and lhe case will not be treated furlther herc. It may, however, be mentioned
that very low a-values can be obtained from this lype of spectrum which is
also evident from the investigations of the “theorelical spectra” on p. 13.

The “box”-approximation miroduced above 1s very convenient (o use lorv
the approximate Ilrealment of the peak distributions, especially 1m cases
where the spectrum contains a number of resonance peaks, such as multi-
degree-of-freedom systems. This will be shown 1n the following.

Multi-degree of FFreedom Systems.

A mechanica! system 1 which the masses can move independenlly or 1n
more than one direction is commonly {ermed, a multi-degree of freedom
system. When the frequency response of such a system 1s plotted 1I will
normally show one resonance (natural frequency] per independent move-
ment, so that a two degrees of freedom system shows two resonance peaks,
a lhree degrees of freedom system shows three rescnance peaks, elce.

A two degrecs-of-Ireedom mechanical system 1s sketched in “block-diagram
form™ 1n Fig. 20 together with i1ts electrical analogue circuit (mobility ana-
logy). This system may for example consist of a mass, sav a compacl
mstrument packed for shipping i a case lined with some elaslic damping
material and the whole package secured (o the deck of a ship for transport.
Or a simplified “equivalence” of a car moving on the road, the “first”
resonance system consisting of the rubber tires and the mass of the wheels
and axles, and the second of the mass of lhe whole car chassis and its
suspension. Actually both the above mentioned analogues are “practical”
simplifications for more complicated systems but may serve as illustrating
examples. The frequency response of the two-degrees-ol-freedom system
considered in If1g. 20 1s shown in I'ig. 21 (aj. IFig. 21 (b) shows the equivalent
“box-filter”-response. As stated in the discussicn of the single-degree-of-
Ircedom system a requirement for the “box-filter” approach to the problem
to be a good approximalion 1s that the high frequency drop-off of the highest
resonance has a fairly steep slope ending in at least — 12 dB/octave and that

Lhe 3 dB band-width of lhe resonance is less than about 1/1 octave. These
conditiens are normally fulfilled in practical vibraiion problems. The fre-
quency response plotted m Fig. 21 refers lo the velocity (displacement) as
measured on the “second”™ mass when Lhe forcing signal consists of a
constant velocity (displacement). Other types of measurements, or forecing
signals will give different frequency responses. When systems with a fre-
quency response of the type shown are subjected to wide band noise input
vibrations, a relatively simple formula for a, governing the peak distribution
ol the response, can be worked out on the basis of the “box”-approximation.



TVOUt (dout!
~ | Spring (L}  Spring 2(L,)

Mass 2 D000 0000
R, R, 9 O\
. T
Spring 2 LI Damping ?Z Damping 1 Damping 2
2y Constant g
Mass 1 - Voltage — - >_}o
Source Mass 1 Magg 2
Spring 1 L’_I Damping 1
‘ & Q/
263350
TVII‘I (din)

Fig. 20. Example of a two degrees of freedom system and its electrical
analogue (mobility analogy).
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Fig. 21. Typical frequency response curve for a two degrees of freedom
system and its “box”-equivalent spectrum.

[t 1s then possible to plot a set of curves of a vs. the ratio between the lwa

fo ¥

resonance frequenciecs, £ with the ratio f = @, Aas parameter (Yo1 ==

cnergy conlained in resonance No. 1, Yy2 = energy contained in resonance
No. 2. The curves are shown in Fig. 22 and reveal a number of interesting
resulls.

I“irstly 1t can be seen that when the energy contained in resonance No. 2 is
very small compared to the energy contained in resonance No. 1 the peak

distribution remains a true Rayleigh distribution (o == 1) until the ratio
_ fo _
between the resonances frequencies, oo 18 relatively great. This can be ex-
1

plained when the maximum slopes and amplitudes of the “two” noise signal
wave-shapes (two resonances) are considered. (To obtain a small peak-notch

combination it is necessary that the slope of the wave-shape of the high
frequency signal 1s greater than the slope of the low frequency signal).
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Fig. 22. Curves derived [rom the “box’-approximation and showing the

dependency of a upon the ratio between the two resonuance f[requencies of a

tiwo dgrees of freedom system. The energy-ratio, f, is used as parameter

Dotted curves refer to very small enerqgy ratios and will most probably be of
little practical interest.

fo

Secondly, the same a-value can be obtained for a fixed *f—-—ratio with different
1

p-values, namely in one case when f is very small and in the second when
/i is considerably grealer. In the case when f is very small the peaks and
notches caused by the high frequency signal (resonance No. 2) are so small
that they will be of htlle, if any, importance in vibration problems, and
only the second case, when /5 is considerably higher, need to be considered
seriously.
The validily of the curves given in Fig. 22 has been checked experimentally
on analogue models as outlined above. Some of the results are given in Figs.
| fo
23 and 24 and by comparing the I 6, and a-values obtained from the
mecasuremenls with those given by lhe curves in Ifig. 22 it i1s seen that a
very good correlation exists between the lheoretical and practical results.
Samples of the signal wave-shapes are also shown and demonstrate very
nicely the linear superposition of the high and low frequency resonance
bands.
I'inally 1t may be mentioned that the {ormula found for a in the case of a
two-degrees-of-freedom system, and given in IFig. 22, can easily be extended
lo multi-degrees-of-freedom systems. It will then take the form:
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Frig. 23. Experimental results obtained from measurements on a two degrees
of freedom system. Both [requency response curves, peak probability density
curves and samples of the signal wave shape are shown. The two resonance
frequencies were 300 c/s and 1900 c/s respectively.
a) p = 00475 (o = 0.104)
b) /= 0.092 (a=0.136)
c) =026 (o= 0.252)
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Fig. 25. I'requency response, peak probability density curve, analogue circuit
and samples of the wave shape for a three degrees of [reedom system excited
by wide band “white” noise.

) I'requency response.
b) Peak probability density curve and analogue circuit.
c) Sample of the output wave-shape.

Cn

should be pointed out here that 1s the energy-ratio between the responses

o
of the two resonance peaks corresponding to the frequency f, and f{. Thus,
il this ratio 1s read from a charl recording calibrated in dB, a difference of



Cn
— 10 dB between the resonance peaks corresponds to P 0.1.
The bandwidths Af, and Af{ are read directly off the chart at the —3 dB
points. _
As an example of the use of the formula given above, a 1lhree-degrees-of-
freedom system having the frequency response shown in Fig. 25 (a), was
Cn .
investigated. The values of P Afn and fn were determined from the response
1
measurements as indicaled in the figure, and the resulling a-value calculated.
By feeding the circuit from the Random Noise Generalor and measuring the
peak distribution the result shown in Fig. 25 (b) was obtained. Note the
cood correlation belween the calculated and lhe measured a-value. IFinally
IFig. 25 (¢) shows a sample of the signal wave-shape.

Conelusion.

A study has Dbeen made of the dependency of the distribution of random
noise maxima upon the shape of the noise spectrum. It was found that the
exact mathematical theory as given by S. O, Rice may be “modified” when
applied to practical vibration problems. The main reason for a possible
“modificalion” is that the exact theory does not distinguish belween the
infinitely small peaks and notches and the more important greater peaks
and notches occurring in wide band noise signals. Peak distributions ob-
tained from the exact mathemalical theory deviate, 1 some cases f(rom
those measured in practice, where the very small peaks and notches are
not accounted for. It is suggested that a “box”-approximation may be used
for the treaiment of resonant systems with amplification factors (Q-values]
creater than around 2 and a steepness of the end-slope towards higher fre-
quencies of al least — 12 dB/octave.

The “box”approximation also simplifies the treatment of more complicated,
multi-degrees-of-freedom systems as commonly met 1n vibration practice
considerably. Good agreement has been found between the results obtained
from “box’-approximations, and practical measurements.

Acknowledgement.
The author wishes at this point to thank Mr. Carl G. Wahrmann of Bruel &
Kjer for many valuable discussions during the preparation of this paper, and
for redesigning the circuitry of the electronic counter used 1n the experimental
part of the work.

28



Selected References:

J. S. BENDAT: “Principles and Applications of Random Noise Theory”, John
Wiley & Sons Inc. 1958.

J. S. BENDAT et, al.: “The Application of Statistics to the Flight Vetricle
Vibration Problem™, ASD Technical Report 61-123, U.S. Depart-
ment of Commerce, Office of Technical Services.

L. L. BERANEK: “Acoustics”, Mc.Graw-Hill Book Company Inc. 1954, New
York, Toronlo, London.

5. H. CRANDALL et. al.: “Random Vibration”, John Wiley & Sons, Inc,
New York, M.I.T. 1958.

C. M. HARRIS and C. E. CREDE: “Shock and Vibration Handbook”, Mc.Graw-
Hill Book Company, 1961, New York, Toronto, London.

J. P. den HARTOG: “Mechanical Vibrations”, Mc.Graw-Hill Book Company,
Inc. 1956, New York, Toronto, London.

J. R. PIILRCLE: "Physical Sources of Noise ', Proc. of the I. R. I£., Vol. 44, May
1956, U.S.A.

5. O. RICLE: “Mathematical Analysis of Random Noise”, Bell System Techn.
Journal 23 (1944) and 24 (1945).

Also contaimned m N. Wax: “Selected PPapers on Noise and
Stochastic Processes”, Dover Publications Inc. New York 1954.



Appendix
Brief Theory of the Distribution of Maxima

The formula given on page 8 has been derived from the original work of
S. O. Rice of the Bell Telephone Laboratories Inc. on mathematical analysis
of random noise. His general equation for the distribution of noise maxima
in amplitude-linear systems was obtained by studying the combined pro-

dx d=x
perties of x, It and a2 of the noise, assuming that x(t) is a normal Gaussian
o | | | dx d2x
process in time. A maximum (peak) is then obtained when di = 0 and ai2

is negative. Using his notation the expectance of a maximum occuring in the

reclangle dx X dt 1s:

dx dt 1 i | o — M, x3
P (x,xt+dx;t, t+dt) = - —— || M [2exp | — -
Mas V8 78 | 2 ‘ M ] ,
(A1)
o Ve Mizx X2
+ M3 x - ) ( 1 + erf — ) exp |— ﬁ)
.2 Mas (2| M| 1\"[3.3)1/ 2 2 Yo
where
M| =—¥7 (¥, ¥, —¥,72
My =-—-¥"¥,4)
Mg = %7
A\I'I;;;;g — —YY,
and
¥, = O\ w(f) df
Y, =-—4 :75205 f= co(f) df

"

V.4 =16 = O\ f o (f) df

Here w(f} is the input power spectral density.

To obtain an expression for the probability density of the maxima (A1) has
to be divided by the total number of maxima Pinx. tot. Occuring i the time
interval t to t + dt. Here again one of Rice’s resulls 1s used:

dt 1 V(01172

—— - —

].JM:IL tot. — 2 o _; ?pﬂ;xr

The probability density function for the maxima then becomes:
P (x, x +dx; t, | T+ di

PM:}:{- tot.

plx)dx = (A2)
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P (X}

—
—_—

V1 —« X = Vo X X a

™

, M11, My3, M33 and Paax 1ot mmto equation (A2

Inserting the values for

cgIves:

1 M|
\/.8 75  Mss 1 / 1 ( W 2 1 Vi
- - — - —— T ——i 1 | ): ""' - —
Paax. tot. \/ 2 f_;’f y/u El[jn ?pﬂ(4) ] \/2 JU
and
Mg 1 — YY) ) 1 B 1
2 ‘ :\Il ’l - 2 — S.Uﬂ!f (yjn 1]]1}(1) — 1 “ff:'_rl) o 2 1/ '. gjﬂffﬂ . OL (1 — Gt)
Pl U= )
and
Mys/ 1 )1/ o 1
I\-”I:;:a( Mzss/ 47 1 W 1 — V" Va
I}MH}{- tot. o 2 — ?p{}/; gjﬂ L T t]]n” gju l]ju(/l) = ’f)n ﬁj
and
M3 o Y2 I
— e = - _ : L e e S — . / | _ B
2 M ‘ Mgyl '/ 2¥, 2, (W Wb — W2) e A 1 — a
- s 172
where o = V ¥, and a = g W)

A2) for the probability densily function then becomes:

The expression

—_— —_— _— a
—_— — . —_— —

|

—— &

o2 L 2065 (1—a) | 20¢ o | 0 2(1—a) /. _

!

which 1s the expression given on page 8.

It 1s interesting to note the “meaning” of the quantity here called a. Again

/ \
7 2

using some ot Rice’s results o 1s equal 1o (:) ) where z 1s the total number
2 m

of zero crossings and m is the total number of noise maxima per second. The
Rayleigh disiribution is obtained for a = 1, i.e. when there is exactly two
zero crossing per peak! (Modulated sine wave}. A Gaussian distribution is
obtained when a = 0, i.e. when there is infinitely many peaks per zero

crossing.
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